Optimal Tuning of Fractional Order PID Controller for DC Motor Speed Control Using Particle Swarm Optimization

نویسندگان

  • Ankit Rastogi
  • Pratibha Tiwari
چکیده

PID controller is the most widely used controller in industry for control applications due to its simple structure and easy parameter adjusting.But increase in complexity of control systems has introduced many modified PID controllers.The recent advancement in fractional order calculus has introduced fractional order PID controller and it has recieved a great attention for researchers.Fractional order PID (FOPID) controller is an advancement of conventional PID controller in which the derivative and integral order are fractional rather than integer.Apart from the usual tuning parameters of PID, it has two more parameters λ (integer order) and μ (derivative order) which are in fractions.This increases the flexiblity and robustness of the system and gives a better performance than classical PID controller. In this research paper, FOPID has been applied to DC motor for speed control and optimal values of λ and μ has been obtained using particle swarm optimization technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Tuning of PID Controller for a Linear Brushless DC Motor using Particle Swarm Optimization Technique

This Paper presents a novel Cultural Algorithm based particle swarm optimization (PSO) technique which is intended to assist in converging to a accurate solution in the control of Linear Brushless Direct Current motor (LBLDC). With the novel PSO-based approach the optimal Proportional-Integral-Derivative (PID) controller parameters are deduced for efficient speed control of Linear Brushless DC ...

متن کامل

Adaptive Particle Swarm Algorithm for Parameters Tuning of Fractional Order PID Controller

In order to optimize the parameters of fractional order PID controller of complex system, an adaptive particle swarm optimization (PSO) method is proposed to realize the parameters adjustment. In this algorithm, the tuning particle population is divided into three subgroups firstly, and through introducing the swarm-aggregation degree factor and the evolution speed factor of particle, dynamical...

متن کامل

Optimal Tuning of Pid Controller Parameters on a Dc Motor Based on Advanced Particle Swarm Optimization Algorithm

Tuning of PID controller parameters is an important problem in control field. To solve this problem we used an Advanced Particle Swarm Optimization which is powerful stochastic evolutionary algorithm that is used to find the global optimum solution in search space. The proposed method has fast searching speed compared to standard PSO. Furthermore this method accelerates the convergence. However...

متن کامل

Design of intelligent PID/PIλDμ speed controller for chopper fed DC motor drive using opposition based artificial bee colony algorithm

This paper deals with the design, implementation and analysis of an integer order (IO) and fractional order (FO) based Proportional Integral Derivative (PID) controller, for speed regulation in a chopper fed Direct Current (DC) motor drive. The interdependent parameters of PID and FOPID controllers are designed in both time and frequency domain. In both domains, designs of controllers are formu...

متن کامل

A PSO-Based Optimum Design of PID Controller for a Linear Brushless DC Motor

This Paper presents a particle swarm optimization (PSO) method for determining the optimal proportional-integralderivative (PID) controller parameters, for speed control of a linear brushless DC motor. The proposed approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency. The brushless DC motor is modelled in Simulink and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013